
Weal-structure effects in the dynamical theory of grazing incidence x-ray 
diffraction 

S. A. Stepanov@ and R. Kijhler 
MPG-AG “Riintgenbeugung, ” Hausvogteiplatz S-7, D-10117 Berlin, Germany 

(Received 1 April 1994; accepted for publication 31 August 1994) 

A study is presented on the grazing incidence x-ray diffraction in multilayers, with theoretical 
considerations on the effects of large-scale and small-scale surface and interface roughness and on 
the effects of interface transition layers. Based on the dynamical theory of grazing incidence x-ray 
diffraction, the study provides a matrix form of solution for an arbitrary sequence of multilayers. 
The computations obtained with a developed computer program show the differences that can be 
observed by the effects of large-scale and small-scale roughness. The effects of small-scale 
roughness and those of transition layers are similar and thus cannot be separated from each other. 
But the thickness of surface and interface transition layers or the rms-values of roughness heights 
are determinable from the shape of diffraction curves by using two different methods. 0 1994 
American Institute of Physics. 

I. INTRODUCTION 

The method of grazing incidence x-ray diffraction (GID) 
has been effectively applied to studies of semiconductor 
multilayers.‘- However, an interpretation of the measure- 
ments was only ossible by resorting to the kinematical dif- 
fraction theory5* B or to relatively crude dynamical diffraction 
models?-’ 

Recently a new matrix method has been developed with 
a view to interpreting GID in arbitrarily layered structures.tO 
This method, which is based on the dynamical diffraction 
approximation provides new possibilities for studying the 
real-structure effects of GID measurements. 

This article is to show how this new approach can be 
used to explain the effects of large-scale and small-scale sur- 
face and interface roughness (Sets. III and IV) as well as 
those of the transition layers at multilayer interfaces (Sec. 
V). The short outline on the theorylo given in Sec. II is 
intended for initiating the discussion. 

II. OVERVIEW OF MATRIX METHOD 

Consider GID in a multilayered structure composed of N 
arbitrary amorphous and matched crystalline layers arranged 
on a thick substrate (Fig. 1). The dynamical diffraction equa- 
tions for GID in this structure can be reduced to the follow- 
ing matrix form (for any polariz$ion of the incident wave): 

SUFU’L’EU e SlFl’U)Dl 
S’Fl(L)D’ = S2F2(u)D2 
. . . = . . . 
skFk(L)Dk = sk+‘Fk+l(U)Dk+l (1) 

. . . c a.. 

sNFN’L)DN = SsFs(u)DS . 

Here S and F are (4X4) matrices representing layer charac- 
teristics; E and D are four-component vectors composed of 

*)Permanent address: Institute for Nuclear Problems, Minsk SU-220050, Re- 
public of Belanrs. 

x-ray wave amplitudes that have to be determined: 
EU=(LW, J/t), where E, and Eh are the amplitudes of 
reflected and diffracted x-ray waves in vacuum, and 
Dk=(D:,D!j,Dt,Di), where 0; are x-ray wavefield ampli- 
tudes in the kth layer. Matrices FkcL*q are diagonal and con- 
tain x-ray phase exponentials calculated at layer boundaries: 
Fk!L’u’)=F;(L~~~tj, 
~~xp(iz&,&~)* k 

where we denoted Ff(L,U) 
, o is the module of the x-ray wave jector 

in vacuum and z is the coordinate along,the internal surface 
normal. Indices z(‘) and Z(U) indicate that the coordinate is 
taken from the lower or upper boundary of the’layer. 

The parameters U; are the roots of the fourth-order dis- 
persion equation of dynamical diffraction in the kth layer: 
(u~-~~-~)((u~+~)~-~~-x~)=x~x~. These roots 
are assumed to be sorted in decreasing order of Im Uj . The 
parameter $I= 2 50 sin e, is the effective misorientation 
w#; *o, ah, and rp are the grazing angles of incident 
wave, diffracted wave, or Bragg reciprocal lattice vector in 
relation to the surface respectively. Parameters go, xi, xi 

-Bragg planes 

PIG. 1. Schematic view of x-ray grazing-incidence diffraction in multilay- 
ers. Ee , Ek, and E, are the amplitudes of the incident, Bragg diffracted, and 
specularly reflected waves. Dy-Df: are the wavefield amplitudes in an ar- 
bitrary Nth layer. 0; and 0; are the wavelield amplitudes in the substrate. 
@a and (P,, are the angles of incidence and exit; 0s is the Bragg angle. 
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are Fourier components of the x-ray dielectric susceptibility 
of the kth layer. 

Sfj 

= 

Finally, matrices Sk have the following form: 

y: ykz yk3 Yk 4 

Vk 1 Vk 2 Vk 3 Vk 4 

Y;U; YkUk 2 2 YkUk 3 3 YkUk 4 4 

vM+ ~4 v2(4+ $1 VW+ *I) v”,& ~4) 

(2j 

where Yi= 1, Vj=(UT- ai-- xu)/xh for crystalline layers 
and Y,=Y3=Vz=V4=1, Y,=Y4=V1=V3=O for amor- 
phous layers and vacuum. 

For the substrate layer the roots with Im Uj<O are dis- 
carded and therefore only the first 2 components of vector D 
and the first 2 rows of matrix S remain and the size of FS is 
(2X2). 

The solution of Eq. (1) for perfect multilayer structure is 
straightforward. At first, these equations are transformed to 
the form: 

EU = (~U’~))-l(SU)-~SlFl(U)Dl 

D1 = (~l~L’)-1(~1)-1~2~2~U~~2 

. . . = . . . 

Dk = (Fk(L))-l(sk)-l~k+l~k+l(U)~k+l ’ 

. . . z . . . 

D* = @W’j - ‘(,y*> - l,yq$‘U)~~. 

0) 

Thus we obtain: 

I 

(~U(L))-1(SU)--S1FI(U)(Fl(~))-1(Sl)-1...~~~N(U)(~N!L))-l(~N)-IS~~~(U)S)D~ 
pJ v J 

s 
9 (4) 

where S is a (2X4) matrix and Eq. (4) is a set of 4 linear 
algebraic equations with respect to 4 unknown variables: 
E,, Eh, D;, and 0;. The solution for Eh is: 

-I -- 
~41~2.2-s42~21 

Eh=S*ps22-S,2S2, ’ (5) 

and the reflection coefficient for the diffracted wave is cal- 
culated according to the formula: 

&=(@h/%J)\Ehi2* (61 
Figure 2 presents the application of above algorithm to 

the computation of a GID curve for an AlAs/GaAs superlat- 
tice (SL) consisting of 20 periods of 150 A GaAs and 100 A 
AlAs matched layers arranged on a crystalline GaAs sub- 
strate. The parameters of computation are: x-ray wavelength 
X=27r/k,= 1.5 A, (220j diffraction planes, rp=O, @a=30’, 
rr-polarization. The curve plotted in dependence of @gh 
shows sharp oscillations due to SL resonances. In the follow- 
ing we demonstrate how various imperfections in SL struc- 
ture affect this example. 

III. EFFECT OF LARGE-SCALE ROUGHNESS 

The effect of large-scale surface roughness on x-ray 
specular reflection curves was studied in many papers (see, 
for example, recent reports1”r2). This effect is usually con- 
sidered by averaging x-ray intensities over surface misorien- 
tations with a Gaussian weight function. This procedure will 
be valid if the surfaces are locally flat on a length scale 
sllAka= 1/(2rGam), where Aku is the change in x-ray 
wave vector under specular reflection (see, e.g., Ref. 4). It 
has been shown that the same approach is applicable to GID 
intensitiesI Though the formulas for averaging are provided 
in Ref. 13, the computations were not carried out and here 

for the first time we present the dynamical diffraction calcu- 
lations. Recently, the effect of large-scale surface roughness 
on GID has been computed in the kinematical diffraction 
approximation.14 

Assuming that a surface domain is misoriented with re- 
spect to the mean surface position by angles 0, and 0, where 
19, is measured in the incidence direction and 0, in that per- 
pendicular to or, then diffraction angles at this domain are 
modified as follows: 

50 100 150 

Exit angle (‘) 

FIG. 2 GID curve for a perfect SL computed with the matrix method de- 
pending on the exit angle of diffracted waves. 
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FIG. 3. The effect of large-scale roughness on GID 1 curves for angular spreads of 1’ and 2’ rms. 

a,,=&~- e1 cos 2e,+ e2 sin 2e,, 
(7) 

p=cp-el sin e,+e2 cos e,, 

where &a, &h, C$ are the mean values and 0, is the Bragg 
angle. 

The averaged intensity is calculated as: 

0wfb~,~j)- 1 1 deld’%Ph(%,@h ,Po) 

Xexp(-(0~+8~)/28~), (8) 
where 4 is the rms angle of surface misorientations. 

If 6, is small (usually less than l’), the change of CP in 
Eq. (7) can be neglected14 and integration is reduced to av- 
eraging over @a and @Ph in Eq. (8). 

Results of computations are presented in Fig. 3. The dis- 
tinct broadening of SL peaks at f&=1’ and %=2’ is well 
seen. Thus, in the case of SL the large-scale roughness can 
be simply estimated from SL peak halfwidths and taken into 
account in theoretical simulations. 

IV. EFFECT OF SMALL-SCALE ROUGHNESS 

The small-scale roughness effect on GID was considered 
only within kinematical diffraction theory.5714 However, the 
methods of accounting for roughness developed in x-ray 
specular reflection studies (see, e.g. Refs. 11, 12, 15, and 16) 
can be applied to the dynamical diffraction model described 
in Sec. II. In contrast to the averaging procedure for the 
large-scale roughness x-ray wave amplitudes are averaged 
here instead of x-ray intensities due to the assumption that 
the lateral roughness scale is much less than l/A/c,, 

Supposing that the coordinates ziyl=zhL) of interfaces 
in Eq. (4) are random functions of lateral coordinates (x,y) 
we get: 

zk(x,Y)=(zk)+Azk(x,Y), 
where Azk are small values. 

(9) 
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The present work is confined only to the study of the 
roughness effect on coherent scattering. No diffuse scattering 
due to roughness (i.e., x-ray intensities in incoherent scatter- 
ing directions) is considered. This.is reasonable because GID 
intensities are usually measured not far from the Bragg maxi- 
mum rather than at large @a and (Ph values where the dif- 
fusely scattered intensities are likely to become comparable 
with the coherent intensities. 

As shown in Ref. 12, the averaging over (x,y) for co- 
herent scattering directions yields always, Gaussian averages 
over AZ, irrespective of the form of the lateral roughness 
correlation function ([Az(x’,y ‘) - Az(x,y)]‘): 

(E”)= &c 
I 

~_dzl?‘(z)exp( -z2/2r2), 

where CT is the rms roughness height. 

(10) 

A. Effect of surface roughness 

Let us consider at first a perfect crystal with a rough 
surface. The matrix 3 for this case can be written in the form: 

Sij’(Fp’L’)-l~yiiFil’U’=exp[i(Ujl--UY)k”t]Xij, (11) 
where Xij-{(S”)-lSs}ij. 

Using Eqs. (11) in (5) we obtain: 

x4lx22 -x42x2 1 

Eh=XllX22-X1TY21 
exp[i(uy-u:)kaz]. (12) 

Then, substituting Eq. (12) in the average integral (10) and 
taking into account that ~:=@a and ui= -QD,-- $ we ob- 
tain: 

(Eh) = Epd exp[-k&?(@a+@cph+ +j2/2]. 03) 

In the same way: 

(E,) = Esp”* exp[ -k~02(2@aj2/2]. (14) 
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FIG. 4. The effect of small-scale surface roughness on GID curves taken 
from a substrate at rms heights 5 8, and 10 A. Two different approaches give 
very similar results. 

Equation (14) shows that the roughness effect on the 
specularly reflected beam in GID coincides with that on the 
usual x-ray specular reflection without any Bragg diffraction 
(compare, e.g., this equation with the corresponding formu- 
las in Refs. 12, 11, and 17). 

Equation (i3) shows that roughness effect on the dif- 
fracted beam depends on both angles a,, and ah. Besides, at 
first sight it may seem strange that the roughness effect in 
Eq. (13) depends on $. However, one should remember the 
relation: @i=(QO+ +)‘-- CY, where CL is the deviation from 
the Bragg condition. Due to this relation the term in the 
exponent may be written in the form: 
@,+@~++I=@,+@~, where @F is the value of @,, at 
IY= 0. Obviously, at the transition from GID to ordinary 
Bragg-case diffraction (FO, 1 @I % m) the parameter 
@p becomes negative and we arrive at the well-known result 
that the roughness effect is only essential for the tails of the 
Bragg curve.18*19 

Thus, we realize that the effect of small-scale surface 
roughness on GID curves is analogous to that on x-ray 
specular reflection curves. The surface roughness is dis- 
played on GID curves as a Debye-Waller factor that attenu- 
ates the intensity at large values of Q0 and (Ph. Figure 4 
shows the calculations for (T=O (dotted line), a=5 ii and 
(~=10 A (dashed lines). It is obvious that (+ can be easily 
determined from the overall damping rate of the curves. 

However, as shown in Ref. 12, roughness is duly consid- 
ered in the above procedure by using the Born approxima- 
tion. The application of the distorted-wave Born approxima- 
tion (DWBA), which is more consistent at grazing angles, 
yields slightly different results near the critical angle of x-ray 
specular reflection ac= m which is much better in line 
with experimental data.‘%” 

In Refs. 11 and 17 where the equations for x-Fay specu- 
lar reflection from layered media were presented in a matrix 
form similar to Eq. (4), it has been shown that the use of 

DWBA is equivalent to averaging individual coefficients in 
the matrix 3. Physically, this means that “the coherency of 
the x-ray field at the rough interface is lost: the incoming and 
the reflected amplitudes each suffer a phase randomization, 
independent of one another.“16 

Now, we try to extend the latter procedure to GID. Car- 
rying out averaging in Eq. (11) we obtain: 

(S,)=S~ exp[-k&2(Uf-UY)2/2]. (1% 
Thus, in the latter case every element in matrix 3 is multi- 
plied by the Debye-Waller factor that contains the difference 
between wave propagation parameters in both media. There- 
fore, the roughness effect will be decreased if this difference 
is decreased. This is a physically consistent result, whereas 
that provided by Eqs. (13) and (14) is not. 

The respective calculations are presented in Fig. 4 (solid 
lines) for (r=5 w and a=10 A. It is well seen that both 
roughness averaging algorithms provide very similar results 
at large Cp, . At Qh<ap, the former one shows a roughness 
effect (see the dashed lines) whereas the latter one does not. 
Principally, the experiment should decide which model is 
appropriate. However, from our experience we should expect 
that the latter one would fit better. Therefore, in the following 
we shall deal with the latter model. 

B. Effect of interface roughness 

Now we consider multilayers where all interfaces are 
rough with rms roughness heights ak (k= 1,. . . ,N). In the 
general case the averaging of matrix S should account for the 
correlations between roughnesses at different interfaces, 
while the averaging integral could be represented as a sum of 
terms containing different interface-to-interface correlation 
functions. 

Here we analyze the particular case of roughness without 
correlation between different interfaces. Then averaging can 
be performed separately at every interface because the expo- 
nents at the other interfaces can be moved outside of the 
integration sign. Therefore, integration can be directly imple- 
mented in Eq. (3). 

We denote (Sk)-‘Sk+‘=XkTk”. Then, “y equation 
from Eq. (3) can be written: 

Dk=(Fk(+lXk,k+lFk+l(U)Dk+l 
(164 

A more detailed form of this equation is (,@, 
=zpsz): 

=XF!k+ lei(u:f’ -uf)k@gk+ 1 
11 i ’ 

where the summation over all repeated indices is assumed. 
Averaging over hz(x,y) both sides of Eq. (16b) and 

assuming Gaussian roughness spread we obtain: 

(Df) = (x”i;!” l)ei($fl -uf)ko$+ 1 , 

where 

7812 J. Appl. Phys., Vol. 76, No. 12, 15 December 1994 S. A. Stepanov and R. Kijhler 



It follows from Eq. (18) that in case of interface rough- 
ness every element of the matrix product (,Sk)-lSk’l is mul- 
tiplied by the respective Debye-Waller attenuating factor. 

In order to explain the physics of this attenuation, we 
now suppose that x-ray scattering in layers A and B does not 
differ very much, i.e., the roots uf and uiki-’ are close to each 
other. Then the matrices Sk and Sk+’ are also close to each 
other and the matrix Yk3kf1=(S~-1Sk-t1 is close to a unit L 
matrix (the diagonal elements are close to one and the mod- 
ules of all nondiagonal elements are much less than one). In 
this case the Debye-Waller 

k+l -- r&” 
exponents containing 

C"j ’ suppress only nondiagonal elements of 
Xk,kC1, whereas the diagonal elements remain unchanged. 
As a result Xkak’l moves closer to the diagonal unit matrix 
and the in&face effect is shadowed. Particularly, in case of 
SL, the amplitudes of SL peaks on GID curves are decreased. 

The small-scale roughness effect on GID curves in case 
of a SL is shown in Figs. 5-6. There is a general difference 
between the effects of surface and interface roughness. The 
surface roughness basically gains the attenuation, of overall 
GID intensity at large angles. This is obviously the same 
effect as on the curves taken from a rough substrate (com- 
pare with Fig. 4). In contrast to that the interface roughness 
does not change the overall intensity drop with increasing 
angle, but reduces the peak intensity of high-order SL peaks. 

As is well seen in the figures, the effect of surface rough- 
ness is stronger than that of interface roughness. Particularly, 
the increase in SL peak intensities is noticeable due to sur- 
face roughness. The comparatively strong effect of surface 
roughness is not surprising because the same effect has been 
reported for x-ray specular reflection curves of SLs.17 The 
physical explanation may be that the difference in X0 -be- 
tween vacuum and SL is much larger than that between the 
pair of layers of SL. Therefore, the surface interface plays 
the dominant role. If this interface is smoothed, the role of 
the SL interfaces will be effectively increased together with 
the height of SL peaks that are increased as well. 

Vm EFFECT OF TRANSITION LAYERS 

The smooth transitions between layers in multilayer 
structure may be formed, e.g;; due to interdiffusion. On the 
other hand,-many studies of effect of small-scale surface 
roughness on x-ray specular reflection curves have reported 
that small-scale roughness could be described as a transition 
layer 11~1516~17 and, consequently, the effects of surface rough- 
ness and transition layers are indistinguishable. Therefore, 
the general question is whether or not these two types of 
distortion can be separated by CID. 

The effect ofiransition layers is directly included in the 
model described in Sec. II. To .account for this effect we can 
follow the approach proposed by Underwood and Barbeem 
for xcray specular reflection from multilayers: Let fl and 
,& be the x-ray susceptibilities of layer A and d and 2 h that 
of layer. B. In Ref. 20 it .was suggested that the transition 
layer should be represented as a sequence of NTran thin sub- 
layers with constant susceptibilities X$anCi) and XyCi) 
within every layer: 
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FIG. 5. The effect of 5 8, small-scale roughness on GID curves of a SL at 
different combinations of surface and interface roughness. 

where fi are the transition coefficients varying from 0 to 1 on 
the transition interval 2tz7. For cosinelike transition these 
coefficients can be expressed: 

fi={ I+ COS( 'TTAzJZ~:~)}/~= COS~( TTAz~/~~T;~). 

The parameter Azi is the sublayer coordinate varying from 
zero to 2tE. 
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FIG. 6. As Fig. 5, but for 10 A small-scale roughness. 

First of all, the roughness and transition layer effects on 
substrate measurements are compared in Fig. 7. At 
tzy=2a both effects virtually coincide and therefore they 
cannot be distinguished. 

On the other hand, the curve with tF:= 20 A shows a 
drop at @,,--i/2t~~, whereas the respective curve with 
o= 10 A does not show it. Apparently, the model used in Sec. 

7814 J. Appl. Phys., Vol. 76, No. 12, 15 December 1994 

lOA 
+T 

2 lo5 

.z? 
2 B 1o-6 
c 
6 
A 8 

lo-' 

g 1 o-6 

2 lUG 
..a.......- Flat surface 

Exit angle (‘) 

FIG. 7. Comparison of small-scale surface roughness and transition layer 
effects on GID curves computed for a substrate. 

TV is not applicable because it is based on the assumption of 
a small exponent: k,,aQ, 4 T. 

The same perfect coincidence of small-scale roughness 
and transition layers effects at t$y=2c is maintained except 
for large k,pQ in case of SL. 

Thus, the effects of small-scale roughness and transition 
layers cannot be distinguished with GID measurements. 
Therefore, both methods developed in Sets. IV and V can be 
successfully applied to the description of these effects. For 
small tpazn or (T the roughness approach is preferable because 
it is much faster. Conversely, for large t$, or (T the transition 
layer approach is more reliable because it corresponds to the 
dynamical diffraction approximation. 

As is well known, the difference between the roughness 
and smooth transition layers can be detected with diffuse 
scattering measurements.r’ However, at present we do not 
see any advantage of diffuse scattering measurements in GID 
experiments. Therefore, it is much simpler to carry out these 
measurements in usual X-ray specular reflection experiments 
far from GID conditions. The information obtained will 
complement the GID measurements. 

VI. CONCLUSIONS 

Effects of surface and interface roughness and transition 
layers on GID curves taken from multilayers have been stud- 
ied. Large-scale roughness causes the broadening of curves 
and can be easily determined especially for SL measure- 
ments. Small-scale roughness and the interface transition 
layers result in the same variations of GID curves and cannot 
be separated from each other. However, the parameters of 
surface and interface smoothing (either the transition layer 
thickness or the roughness height) can be determined from 
the shape of GID curves by two independent methods which 
provide an increased reliability of measurements. 
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